
Style Guide Suggestion for Scobees

Git Style
- A clean git helps to keep track of your work and make it transparent to others

involved.
- There are at least three factors that need to be discussed:

o Branching
o Commit messages
o Commit style (squashing, merging)

Git Branching
Keep track of what is released and what is in development for what purpose.

- The following document suggests a branching model that is still state of the art if
you want to keep your production system stable:
https://nvie.com/posts/a-successful-git-branching-model/

- In short, these are the branches you will need:
o feature branches: This is where you develop new features; all branches

are prefixed with feature/
o develop branch: Finished feature branches are merged into develop; this

is where most of your commits take place, current unstable development
branch

o release branch: This is where you prepare your current development state
for release; no new features, only bug fixes on the way to your next
planned release are committed here; remember to merge back into
develop, if you commit bugfixes

o master branch: This is where you keep your production code, add tags to
keep track of your release versions; merge only from release or hotfix

o hotfix branches: If there is a bug in your production code, create a branch
prefixed with hotfix/ to eliminate the bug; remember to merge it into
master and develop when finished

Git Commit Messages
Help your team to keep track of what you have committed to the project.

- Commit messages should be understandable without looking into the code; in
fact, even your project maintainers (non-developers) should be able to
understand, what you have done.

- This blog post suggests a clean and easily understandable way of writing commit
messages: https://chris.beams.io/posts/git-commit/

- In short, the main points are:
o Use subject line and message body (separated by a blank line)
o Keep the subject line short
o Capitalize the subject line
o Use the imperative mood in the subject line

§ The subject line should complete the imaginary sentence “If applied,
this commit will …”

o Provide additional information in the message body

https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/
https://chris.beams.io/posts/git-commit/


- In addition to these points, it may be useful to categorize your commits by adding
prefixes to your subject line

o “New:” New feature added
o “Fix:” Something was fixed
o “Change:” Behavior changed
o “Migration:” Changes in data structure were necessary

- If you have a ticket system, refer to the related issue in your message body.

Git Commit Style
Squash commit feature branches to keep your other branches clean and their history
short.

- The afore mentioned rules for commit messages are not written into stone but
should be respected for develop, release and hotfix branches.

- Feature branches take a special part, because I suggest merging finished feature
branches into develop in a single commit.

- Doing it this way, you have to write only one elaborate commit message instead
of thinking about it every time you push something into the repository.

- The other big advantage is, the develop branch stays clean and clear all the time,
as you don’t have every single work-in-progress commit showing up in your
commit history after merging.

- You can do whatever you want inside your feature branch, if you finalize it with
one clean pull request into develop.

- Go thoroughly through every single changed file to avoid committing unnecessary
changes and obsolete code.

Code Style
Documentation
Help new team members and the “future you” to understand what you have done and
why.

- Every component should have a comment section that explains what it does.
- Every method should have a comment section that explains what it does, which

parameters it takes and what it returns.
- Add inline comments wherever necessary; e. g. to elaborate what fields in your

component are used for.
- The main README should explain the structure of your project, you can add

more README files to your module folders as your project and complexity grow.
- Use proper Markdown syntax when writing your READMEs.
- If you copy code from Stack Overflow or another source, it means you had to

google to find a solution to your problem and the solution might not always be
obvious. Add the link to the solution as a comment.

Naming Conventions
Standardize how you name fields, translation keys, methods, components.

- Development is a lot easier, if you don’t have to guess whether the field name is
school_id, idSchool or schoolId. Not to mention there could even be a shcoolId
somewhere.

- Suggested naming convention (in every case: use descriptive identifiers):
o Method names: camel case



o Field names: camel case, add Id as suffix if needed
o Interface and class names: pascal case
o Translation keys: kebab case, avoid slashes, upper case letters and

underscores
o CSS classes: kebab case

CSS Style Classes
Define context-based classes, not style-based classes.

- You don’t need classes like “text-center” or “align-center” as they are not better
than the use of inline styles.

- Use classes like “card-header” or “card-grid” instead and define your styles
context-based.

- Maybe even define classes locally inside your components’ style sheets if they
only apply to a single component.

Use class hierarchy instead of the important keyword. In general, avoid “important”.

- CSS classes depend on the order in which they are defined. A second definition
of a class overwrites the first one.

- Keep track of this when you define your styles or themes and avoid overwriting
classes with important.

- If you make extensive use of the important keyword when overwriting classes
from your UI framework (e. g. Angular Material), take a step back and try to figure
out if there are other ways of theming the UI or if you should look for another
framework that better suits your needs.

Use CSS custom properties for better theming.

- CSS supports custom properties which make it a lot easier to add theming to your
style sheet and allow runtime changes (big advantage over SCSS variables).

-
https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_custom_properti
es

Use SCSS hierarchy wherever useful.

- If you have nested styles, make use of SCSS’ scoping by curly braces and avoid
CSS like notation.

- This will give a clean structure to your style sheet.

Use imports to keep your files short.

- If you still have a lot of classes that need to be defined globally, split your style
sheet into multiple files and import them into your main file in the correct order.

- Define a meaningful structure while doing so.

Folder and Project Structure
Define a folder structure that fits your needs and stick to it.

- There are a lot of different approaches to structure angular projects.
- Whatever way you decide for, restructure your code to fit the rules and respect

the rules with every new feature you develop.
- If, at a time, you find out that the structure you decided for, doesn’t fit, adjust the

rules and restructure your project in a way that fits the new rules.

https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_custom_properties
https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_custom_properties


- Here are some approaches:
o

https://itnext.io/choosing-a-highly-scalable-folder-structure-in-angular-d98
7de65ec7

o
https://stackoverflow.com/questions/52933476/angular-project-structure-b
est-practice

Keep Your Code Updated
Angular provides new releases on a regular basis. Don’t run out of service.

- The angular team provides long term service for 12 months for every major
version.

- As the web and browsers evolve quickly and the migration guide gets longer with
every new release, you should try not to run out of service and plan upgrading
angular on a regular basis.

Refactoring
Refactoring on a regular basis is necessary to keep your code clean.

- Mistakes happen.
o There may not always be enough time to add comments for every

component and every method.
o Old code needs to be cleaned up from time to time.

- If you refactor, check for all aspects described in your style guide.
- Create a feature branch for refactoring.
- Make extensive use of the find-and-replace function of your preferred IDE.
- Keep track of what you’ve done and describe it in your commit message(s).

https://itnext.io/choosing-a-highly-scalable-folder-structure-in-angular-d987de65ec7
https://itnext.io/choosing-a-highly-scalable-folder-structure-in-angular-d987de65ec7
https://itnext.io/choosing-a-highly-scalable-folder-structure-in-angular-d987de65ec7
https://stackoverflow.com/questions/52933476/angular-project-structure-best-practice
https://stackoverflow.com/questions/52933476/angular-project-structure-best-practice
https://stackoverflow.com/questions/52933476/angular-project-structure-best-practice

